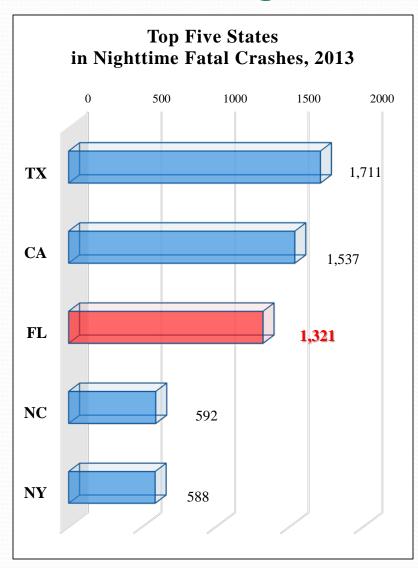
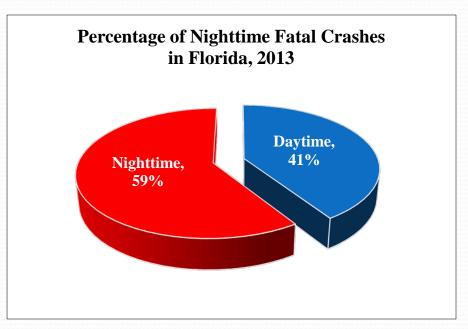


Safety Effects of Street Illuminance at Urban Signalized Intersections in Florida

Zhenyu Wang, Pei-Sung Lin, Seckin Ozkul, and Ping P. Hsu

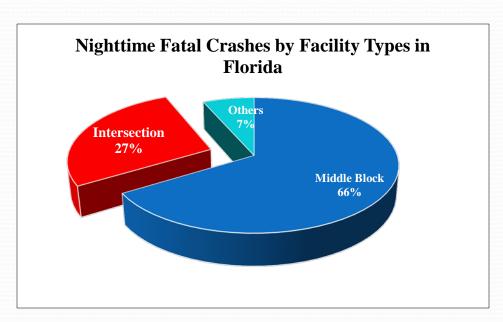

Transportation Research Board 95th Annual Meeting


January 10-14, 2016 • Washington, D.C.

Outline

- Background
- Data Collection
- Methodology
- Results and Findings
- Conclusions

Nighttime Fatal Crash Facts


Only <u>21-23%</u> of the vehicle miles traveled (VMT) occurred at night. (*Monsere and Fischer*, 2008)

Nighttime includes Dark, Dark w. Light Dusk, and Dawn

Source: NHTSA FARS 2013

Nighttime Crash Facts at Intersections

- Planed points of conflict in any roadway system
 - Vehicle-Vehicle
 - Vehicle-Pedestrian
- High traffic and pedestrian volume
- Receive more attention in nighttime safety

Nighttime includes Dark, Dark w. Light Dusk, and Dawn

Source: NHTSA FARS 2013

Street Lighting

- Additional visibility to help drivers complete the driving task.
- A safety countermeasure to reduce nighttime crashes at signalized intersections.
 - "AASHTO Strategic Highway Safety Plan Implementation Guide"
- FDOT Roadway Lighting Requirements

	Illumination Level	Uniformity Ratios		
Road Classification	Average Initial Horizontal Foot Candle (HFC)	Avg/ Min	Max/Min	
Interstates,				
Expressways,	1.5	4:1 or less	10:1 or less	
Freeways, and	1.5			
Major Arterials				
All other	1.0	4.1 or loss	10.1 or loss	
Roadways	1.0	4:1 or less	10:1 or less	
Pedestrian Ways and Bicycle Lanes	2.5	4:1 or less	10:1 or less	

Past Studies

- Safety effects of installation of street lighting
- Safety effects of quantified horizontal illuminance at intersections
 - Edwards. 2015 Minnesota
 - 1-lux increase reduced nighttime crash by 9%, 20%, 95% for all, lighted, and unlighted intersections, respectively
 - Bhagavathula et al. 2015 Virginia
 - 1-lux increase reduced night-to-day ratio by 7%, 9%, and 21% for all, lighted, and unlighted intersections, respectively

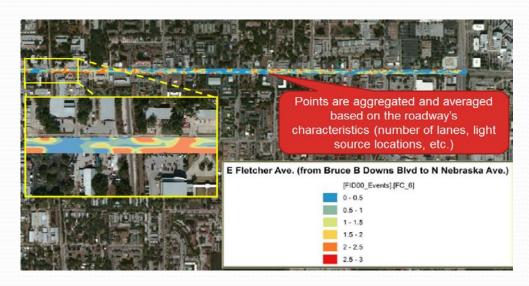
Research Objectives

- To address the influence of the horizontal illuminance on nighttime crash frequency at urban signalized intersections;
- To quantify the influence of the horizontal illuminance on night-to-day crash ratio; and
- To address the influence of the horizontal illuminance on nighttime crash injury severity at urban signalized intersections.

Advanced Lighting Measurement System

Current version: 2.1

Up to 6 lighting meter inputs

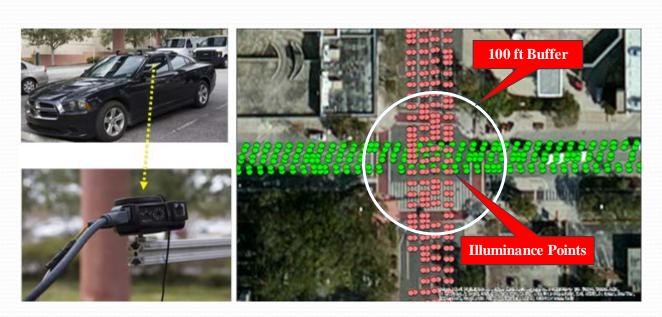

Horizontal illumination

High accuracy

Resolution: 2 points per 10 feet

Speed: = 30 mph

Special event logger


Lighting Data Collection

- Completed data collection for **300+ centerline miles** in Tampa Bay
- 2012 2014

Site Selection

- A total of 91 signalized intersections with street lights were selected
 - Located in urban area
 - High Pressure Sodium (HPS)
 - No upgrade in past four years
- A circular buffer with a 100-feet radius

Data Collection

- Illuminance Data
 - Average horizontal illuminace (foot-candle, fc)
 - 2012 2014
- Crash Data
 - Florida Crash Analysis Reporting (CAR) system
 - 2010 2013
 - Daytime (daylight) + Nighttime (dark)
- Others
 - Geometry Google Maps, Florida RCI
 - Traffic Florida Traffic Information DVD

Data Description for Crash Frequency Modeling

<u> </u>				0
Count Variables	Min.	Max.	Mean	Std. Dev.
Daytime crash frequency (2010-2013)	o	102	36.20	24.21
Nighttime crash frequency (2010-2013)	0	46	15.50	10.99
Continuous Variables	Min.	Max.	Mean	Std. Dev.
Log(AADT) on major road	8.55	11.12	10.30	0.49
Log(AADT) on minor road	7.17	10.94	9.43	0.95
Categorical Variables	Code	Freq.	Percent	
Intersection Type	o – 3-leg intersection	10	10.99	
intersection type	1 – 4-leg intersection	81	89.01	
	1 – average illuminanc	8	8.79	
Lighting Level	2 – 0.2 ≤ average illum	73	89.01	
	3 – average illuminand	10	10.99	
Observations	91			

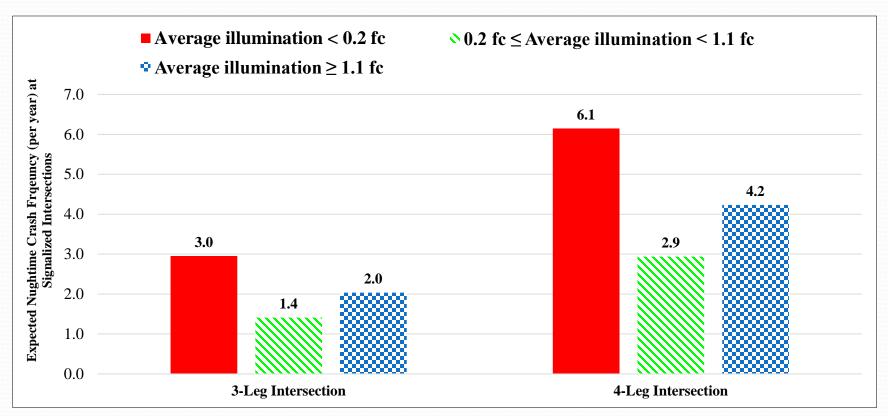
Data Description for Injury Severity Modeling

Categorical Variables	Code	Freq.	Percent	
Injury Severity	o – slight injury/property damage only 1 - death or serious injury	1,109 125	89.87 10.13	
Lighting Level	o – illuminance < 0.9 fc	804	65.15	
Lighting Level	1 – illuminance ≥ 0.9 fc	430	34.85	
	1 – rear-end	512	41.49	
	2 – head-on	46	3.73	
Crash Type	3 – angle	412	33.39	
Clash Type	4 – sideswipe	45	3.65	
	5 – pedestrian/bicycle	60	4.86	
	6 – others	159	12.88	
Observations	1,234			

Modeling Methods

- Negative binomial (NB) model
 - Expected nighttime crash frequency (N)
 - Expected daytime crash frequency (D)
 - By lighting level categories (low, medium, high)
- Night-to-day crash ratio change

$$\frac{(N_a/D_a) - (N_b/D_b)}{(N_b/D_b)} \times 100\%$$


- Binary probit (BP) model
 - Probability of fatal and severe injury

Fitted NB Model

	NB Mode	1 T	NB Model II (with a yearly indicator)		
Variable	IAD Mone	211			
variadæ	Nighttime	Daytime	Nighttime	Daytime	
	Coeff.	Coeff.	Coeff.	Coeff.	
Log AADT on major road	0.468*	0.403*	0.417*	0.372*	
Log AADT on minor road	0.414	0.347*	0.387*	0.310*	
Average illumination < 0.2 fc	0.739*	0.083	0.729	0.072	
0.2 fc ≤ Average illumination < 1.1 fc	Baseline				
Average illumination ≥ 1.1 fc	0.365**	0.218	0.312*	0.18	
4-leg intersection	0.7330*	0.432**	0.803*	0.521	
2010	-	- Baseline			
2011 (1=year 2011; 0=otherwise)	-		-0.289*	-0.346	
2012 (1=year 2012; 0=otherwise)		-	-0.146	-0.239*	
2013 (1=year 2013; 0=otherwise)			-0.227*	-0.098	
Constant	-6.999	-4 .336	-7.453	-4 .927	
Over-dispersion parameter (α)	0.296	0.310	0.258	0.329	
Model Statistics					
Number of observations	91	91	364	364	
DF	7	7	10	10	
Log Likelihood	-304.080	-389.970	-783.619	-1,099.307	
Pseudo R ²	0.069	0.045	0.075	0.052	

^{*} Statistically significant at 95% confidence level.
** Statistically significant at 90% confidence level.

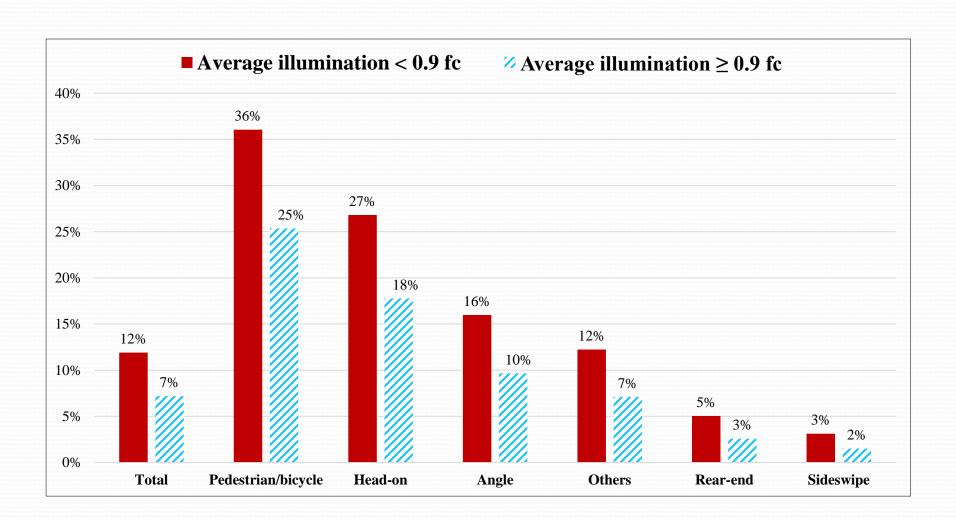
Expected Nighttime Crash Frequency

- Increase Illuminance from < 0.2 fc to 0.2 fc 1.1 fc will reduce nighttime crash number by
 - 53% (1.6 per year) at 3-leg intersections
 - 52% (3.1 per year) at 4-leg intersections

Expected Night-to-day Crash Ratio

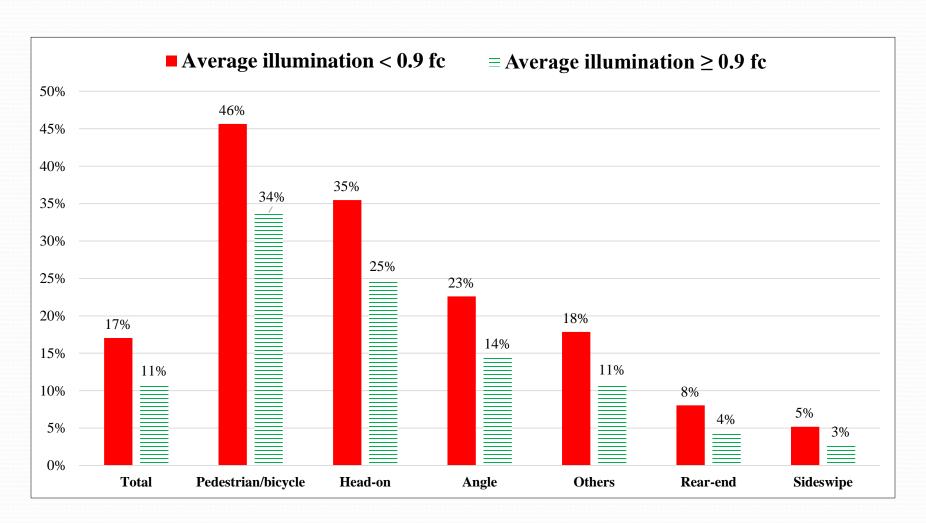
- Relevant nighttime crash frequency compared to daytime crash frequency
- Compared to the low illuminance (< 0.2 fc), the medium illuminance (0.2 1.1 fc) will reduce N-D ratio by 48%

$$\frac{\exp(0.739 \times 0 + 0.365 \times 0)}{\exp(0.083 \times 0 + 0.218 \times 0)} - \frac{\exp(0.739 \times 1 + 0.365 \times 0)}{\exp(0.083 \times 1 + 0.218 \times 0)} \times 100\% = -48\%$$


$$\frac{\exp(0.739 \times 1 + 0.365 \times 0)}{\exp(0.083 \times 1 + 0.218 \times 0)}$$

Compared to the medium illuminance (0.2 – 1.1 fc), the high illuminance (≥ 1.1 fc) will increase N-D ratio by 15.8%

Fitted Probit Model


Variable		Coef.	Std. Err.	l. Err. z		[95% CI]	
Average illuminance	≥ 0.9 fc	-0.308	0.125	-2.460	0.014	-0.553	-0.063
	Rear-end Baseline				ne		
	Head-on	1.030	0.244	4.230	0.000	0.553	1.507
Crash Type	Angle	0.650	0.142	4.580	0.000	0.372	0.929
	Sideswipe	-0.225	0.465	-0.480	0.628	-1.135	0.686
	Pedestrian/bicycle	1.293	0.217	5.960	0.000	0.868	1.718
	Others	0.482	0.185	2.610	0.009	0.119	0.844
Alcohol/Drug	Involved	0.304	0.140	2.160	0.031	0.029	0.579
Constant		-1.706	0.122	-13.980	0.000	-1.945	-1.467

Predicted Probability of Fatality and Severe Injury by Crash Types

Predicted Probability of Fatality and Severe Injury by Crash Types

Alcohol/Drug Involvement

Conclusions

- Street lighting is an effective countermeasure to improve safety at signalized intersections, especially for pedestrians and bicyclists
- To reduce crash frequency, illuminance should be 0.2 1.1 fc
- To reduce crash severity, illuminance should be ≥ 0.9 fc
- Maintain the average illuminance at signalized intersections <u>o.o fc or higher</u>

